

Boosting Spike Camera Image Reconstruction from a Perspective of Dealing with Spike Fluctuations

Rui Zhao^{1,2} Ruiqin Xiong^{1,2*} Jing Zhao^{1,2} Jian Zhang³ Xiaopeng Fan⁴ Zhaofei Yu¹ Tiejun Huang^{1,2} ¹SCS PKU ²NKLMIP PKU ³SECE PKU ⁴SCST HIT

1. Introduction

1.1 Spike Camera Each pixel of the spike camera comprises three main components: a photon receptor, an integrator, and a comparator. The incoming photons are captured by the photon receptor and accumulated by the integrator. Whenever the number of accumulated photons reaches a predefined threshold θ , a spike is fired, and the integrator is reset.

Key components of a pixel in spike camera

$$\mathbf{A}(\mathbf{x},t) = \int_0^t \alpha \mathcal{P}\left(\mathbf{L}(\mathbf{x},\tau)\right) \mathrm{d}\tau \mod \theta$$

lpha is the quantum conversion coefficient of photons. ${\cal P}$ means Poisson sampling. $L(x, \tau)$ is the expected number of arrival photons at a pixel area per unit time.

1.2 Fluctuations in Spikes

Effects in the imaging of spike cameras.

- (a) Poisson Effect of Photons' Arrival
- (b) Quantitative effect from spike readout
- (c) Thermal noises in the circuits

Integration period of spikes

Randomness in imaging procedure

Light intensity

Fluctuations: even when the light intensity is constant, the integration period of each spike changes over time.

2. Methods

Disturb

2.1 Overall Architecture of the proposed method (BSF)

- $\mathbf{V}^{\mathsf{p}}_{i,\ell} = 1$
- $\widehat{\mathbf{V}}_{i,\ell}^{\mathrm{p}}(\mathbf{x})$:
- $\mathcal{A}(\mathbf{V}_{i}^{\mathrm{p}}(\mathbf{x}))$

Value

$\mathcal{Z}[\mathbf{V}_{i,\ell}] = \mathcal{Z}[W_V \mathbf{F}_i]$	$\begin{bmatrix} \text{ref} \\ i, \ell \end{bmatrix}$
$= \mathcal{A} \left(\mathbf{V}_{i,\ell}^{p}(\mathbf{x}) \right) \sigma \left(\frac{(\mathbf{Q}_{\ell}^{p})}{2} \right)$	$rac{1}{\sqrt{C_k}} \mathcal{A}ig(\mathbf{K}^{p}_{i,\ell}(\mathbf{x})ig)ig)$
$\mathbf{D} = \left\{ \mathbf{V}_{i}^{\mathrm{p}}(\mathbf{x} + \boldsymbol{\delta}) \right\}_{\boldsymbol{\delta}}$	$\in \mathcal{N}(\mathbf{x};k_{\mathfrak{p}})$

3. Experiments

3.1 Quantitative Results on REDS-SCIR Dataset

(1) Reference-based metrics

		$\eta = 1.00$			$\eta = 0.75$			$\eta = 0.50$		Params (M)
	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS \downarrow	PSNR ↑	SSIM ↑	LPIPS \downarrow	
	27.27	0.711	0.265	26.73	0.669	0.300	25.62	0.581	0.370	
	23.55	0.634	0.329	24.77	0.673	0.293	26.77	0.713	0.249	
]	20.35	0.678	0.270	19.62	0.685	0.252	21.10	0.707	0.247	
5]	29.57	0.879	0.112	30.07	0.884	0.113	29.65	0.869	0.136	
] 📥	34.38	0.922	0.077	33.87	0.911	0.084	32.62	0.884	0.105	0.038
*	33.24	0.918	0.082	32.85	0.909	0.089	31.96	0.889	0.109	22.179
	32.60	0.920	0.088	32.09	0.907	0.097	31.00	0.879	0.122	2.385
2	33.94	0.923	0.075	33.27	0.909	0.088	32.01	0.883	0.116	2.385
et [64]	35.21	0.953	0.036	34.70	0.945	0.044	33.75	0.926	0.064	3.904
et [64] 秦	39.16	0.966	0.024	38.27	0.958	0.032	36.59	0.940	0.051	3.904
]	35.21	0.950	0.039	34.98	0.947	0.042	34.11	0.931	0.057	3.806
] 📥	38.97	0.964	0.027	38.23	0.957	0.034	36.75	0.940	0.049	3.806
)	39.76	0.970	0.021	39.09	0.964	0.027	37.76	0.951	0.040	2.477

(2) Non-reference-based metrics

	BRISQUE \downarrow	$PIQE\downarrow$	HOSA \downarrow	Part	Method	BRISQUE \downarrow	$PIQE\downarrow$	HOSA ↓
	37.502	45.956	35.436	(C)	SSML [5]	29.240	25.491	35.399
	37.708	45.148	30.892		55ML [5] 🕈	32.234	20.981	35.554
59]	37.585	38.714	29.173		Spk2ImgNet [64]	29.351	26.745	25.761
]	32.089	41.927	29.334		Spk2ImgNet [64] 秦	29.180	39.593	31.287
[65]	30.910	30.068	26.757	(D)	WGSE [58]	24.637	27.831	25.657
39] 📥	25.545	25.076	35.305		WGSE [58] 秦	23.429	30.673	27.434
6] 秦	33.403	46.682	36.482		BSF (Ours)	18.529	23.477	25.523

3.2 Visualization Results on Real-Captured Data

it]	TFP (ICME2019)	TFSTP (CVPR 2021)	MAHTF (TCI 2022)	SNM (TPAMI 2023)	FireNet (WACV 2021) 🐥	ETNet (ICCV 2021) 🐥
						TA NALANA
	SSML (IJCAI 2022) 🐥	Spk2ImgNet (CVPR 2021)	Spk2ImgNet (CVPR 2021) ♣	WGSE (AAAI 2023)	WGSE (AAAI 2023) 🐥	Ours
深						
ıt]	TFP (ICME2019)	TFSTP (CVPR 2021)	MAHTF (TCI 2022)	SNM (TPAMI 2023)	FireNet (WACV 2021) 🐥	ETNet (ICCV 2021) 🐥
	SSML (IJCAI 2022) 🐥	Spk2ImgNet (CVPR 2021)	Spk2ImgNet (CVPR 2021) 🐥	WGSE (AAAI 2023)	WGSE (AAAI 2023) 🐥	Ours
					ACCESS ADDRESS	ALCONTRACT IN

methods

(4) (5)

(6)

(8)

(9)

(7) 🗸

Softmax

Architecture

(Self-supervised)

(Supervised)

Retrained

3.3 Ablation Studies Ablations on Proposed Modules

	MGA			PSNR ↑	
DCN	CAPA	Pym	$\eta = 1.00$	$\eta = 0.75$	$\eta = 0.50$
			38.44	37.69	36.29
			38.78	38.10	36.80
			38.99	38.32	37.00
\checkmark		1	38.91	38.26	36.96
\checkmark	\checkmark	1	39.06	38.39	37.06
\checkmark		2	39.02	38.39	37.11
\checkmark	\checkmark	2	39.39	38.73	37.41
\checkmark		3	39.38	38.77	37.53
1	1	3	39.76	39.09	37.76

Ablations on the number of input frames

Mu	$\eta = 1.00$			η	$\eta = 0.75$			$\eta = 0.50$		
1 VIF	P↑	S ↑	$L\downarrow$	P↑	S ↑	$L\downarrow$	P↑	S ↑	$L\downarrow$	
21	38.14	0.959	0.032	37.44	0.952	0.039	36.08	0.935	0.055	
41	39.35	0.969	0.021	38.67	0.963	0.027	37.34	0.949	0.041	
61	39.76	0.970	0.021	39.09	0.964	0.027	37.76	0.951	0.040	
81	39.70	0.969	0.022	39.03	0.963	0.028	37.69	0.950	0.042	

Ablations on Hyper-parameters of the CAPA module

	MGA		S_{n}	$k_{\rm p}$	PSNR ↑		
Pym	DCN	CAPA	<u> </u>	.°p	$\overline{\eta} = 1.00$	$\eta = 0.75$	$\eta = 0.50$
3	1	×	X	X	39.380	38.768	37.533
3	\checkmark	\checkmark	<u>3</u>	3	39.759	39.088	37.764
3	\checkmark	\checkmark	5	3	39.704	39.041	37.714
3	\checkmark	\checkmark	7	3	39.693	39.030	37.714
3	\checkmark	\checkmark	9	3	39.700	39.037	37.721
MGA			Sp	k_{p}	PSNR ↑		
Pym	DON	~	Г				
2	DCN	CAPA			$\eta = 1.00$	$\eta = 0.75$	$\eta = 0.50$
3	DCN	CAPA ×	×	X	$\eta = 1.00$ 39.380	$\eta = 0.75$ 38.768	$\eta = 0.50$ 37.533
3 3	DCN ✓	CAPA ★	× 3	× <u>3</u>	$\eta = 1.00$ 39.380 39.759	$\eta = 0.75$ 38.768 39.088	$\eta = 0.50$ 37.533 37.764
3 3 3	DCN ✓ ✓ ✓	CAPA × √ √	× 3 3	× <u>3</u> 5	$\eta = 1.00$ 39.380 39.759 39.712	$\eta = 0.75$ 38.768 39.088 39.047	$\eta = 0.50$ 37.533 37.764 37.726
3 3 3 3	DCN	CAPA ✓ ✓ ✓	× 3 3 3	× <u>3</u> 5 7	$\eta = 1.00$ 39.380 39.759 39.712 39.731	$\eta = 0.75$ 38.768 39.088 39.047 39.069	$\eta = 0.50$ 37.533 37.764 37.726 37.749