

1. Introduction

1.1 Spike Camera. Spike cameras are composed of an array of pixels working asynchronously. Each pixel of a spike camera is composed of three main components: photon-receptor, integrator, and comparator. The integrator accumulates the photoelectrons from the photon-receptor and transfers them to the voltage. The comparator compares the accumulation with the threshold continuously. Once the voltage of the integrator exceeds a certain threshold, the camera fires a spike and resets the accumulation.

Key components of a pixel in spike camera

$$A(\mathbf{x},t) = \int_0^t \alpha \cdot I(\mathbf{x},\tau) \mathrm{d}\tau \mod \theta$$

1.2 Challenges of Spike-Based Optical Flow.

Noises in the imaging of spike cameras.

(a) Poisson Effect of Photons' Arrival

(c) Thermal Noises in the Circuits

Fluctuations and Randomness in Spikes

Ambiguities in correlation —> Inaccurate feature matching

2. Contributions

- A HiST-SFlow is proposed for spike-based optical flow. In HiST-SFlow, the spikes are represented by the HiST module and extracted to features for correlation. The optical flow is estimated by a recurrent optimizer.
- An inter-moment hierarchical fusion (InterF) module and an intra-moment filtering (IntraF) module are proposed to suppress the randomness in the spikes. A scene loss is proposed to constrain high-fidelity representation to contain the brightness information of the scene.

Optical Flow for Spike Camera with Hierarchical Spatial-Temporal Spike Fusion

Rui Zhao¹ Ruiqin Xiong¹* Jian Zhang¹ Xinfeng Zhang² Zhaofei Yu¹ Tiejun Huang¹ ¹Peking University ²University of Chinese Academy of Sciences

Index

(A)

(B) (C) (D) (E)

Fuse features at different moments while retaining the time information in features.

$$\mathbf{J}_{m}(\mathbf{x},t) = \mathscr{J}_{m}\left[\left\{\mathbf{K}_{m-1}(\mathbf{x},\tau) \mid \tau \in \mathbb{T}_{m-1}\right\}\right]$$
$$\mathbb{T}_{m-1} = \left\{T_{c} - T_{m-1}^{\text{half}}, \dots, T_{c}, \dots, T_{c} + T_{m-1}^{\text{half}}\right\}$$

(b) Intra-Moment Filtering (IntraF).

Reduce the influence of spikes' fluctuations for each moment through the feature at the current moment.

The InterF and IntraF are implemented alternatively in each level of the pyramid.

$$\mathbf{K}_{m}(\mathbf{x},t) = \mathscr{K}_{m}\left[\mathbf{J}_{m}(\mathbf{x},t)\right], \ t \in \mathbb{T}_{m}$$

(c) Global Temporal Aggregation (GTA).

Fuse features of all the moments at each level of the pyramid to represent the central moment of input spike sub-stream.

$$\mathbf{A}_m(\mathbf{x}) = \mathscr{A}_m\left[\operatorname{Cat}\left\{\mathbf{K}_m(\mathbf{x},\tau) \mid \tau \in \mathbb{T}_m\right\}\right]$$

(d) Scene Loss.

- Ensure the spike representation contain the scene's brightness information
- The $\{\mathscr{P}_m\}_{m=0}^3$ are 3-layer convolution layers, which are used only during training and not in inference.

$$\mathcal{L}_{\text{scene}} = \|\mathbf{I}_{\text{scene}}(\mathbf{x}, T_{\text{c}}) - \mathscr{P}_{0}(\mathbf{R}_{T_{\text{c}}}(\mathbf{x}))\|_{1} + \sum_{m=1}^{s} \lambda_{m} \|\sigma_{m}(\mathbf{I}_{\text{scene}}(\mathbf{x}, T_{\text{c}})) - \mathscr{P}_{m}(\mathbf{A}_{m}(\mathbf{x}))\|_{1}$$

3.3 Loss Function.

$$\mathcal{L}_{\text{flow}} = \sum_{i=1}^{N} \gamma^{N-i} \| \mathbf{w}_i(\mathbf{x}) - \mathbf{w}_{\text{gt}}(\mathbf{x}) \|_1 \qquad \qquad \mathcal{L} = \mathcal{L}_{\text{flow}} + \lambda (\mathcal{L}_{\text{scene}}^{\text{src}} + \mathcal{L}_{\text{scene}}^{\text{tgt}})$$

NERC

National Engineering Research Center of Visual Technology

ure	Ball	Cook	Dice	Doll	Fan	Hand	Jump	Poker	Тор	Average
V	0.51 / 20.3	1.34 / 38.6	1.10/30.7	0.22/5.6	0.24 / 10.7	1.30 / 57.3	0.11 / 3.0	0.80/41.1	2.14 / 17.7	0.863 / 25.00
	0.46 / 12.5	1.32/43.7	0.95 / 29.3	0.24 / 6.7	0.28 / 12.7	1.11 / 45.1	0.11 / 3.0	0.67 / 37.1	2.19/19.7	0.813 / 23.30
	0.61 / 21.7	1.84 / 74.7	1.13 / 34.2	0.39 / 9.4	0.36 / 12.1	2.13 / 80.6	0.17 / 2.8	0.88 / 43.5	2.29 / 23.6	1.087 / 33.63
)	0.79 / 51.4	1.28 / 50.8	1.15 / 47.9	0.27 / 6.3	0.28 / 11.0	1.86 / 83.1	0.13/3.4	0.85 / 50.1	2.19/17.7	0.979 / 35.76
W	0.47 / 14.9	1.41 / 45.9	0.87 / 29.9	0.27 / 7.1	0.29 / 12.7	1.19 / 47.7	0.12/3.0	0.65 / 36.6	2.19/19.4	0.827 / 24.12
W	0.76 / 42.4	1.29 / 61.0	1.54 / 81.7	0.31 / 8.4	0.43 / 14.1	1.83 / 65.0	0.30/3.7	0.95 / 54.2	2.29 / 23.3	1.077 / 39.33
Net	0.45 / 12.1	1.22 / 43.8	1.02 / 32.9	0.35 / 7.8	0.25 / 10.7	1.53 / 65.3	0.12/3.2	0.65 / 31.5	2.18 / 17.5	0.863 / 24.98
Γ	0.61 / 15.0	1.28 / 43.5	0.93 / 27.6	0.19 / 5.0	0.25 / 10.2	1.67 / 73.3	0.10/2.6	0.56 / 23.1	2.15 / 15.1	0.860 / 23.94
ner	0.52 / 13.5	1.48 / 58.7	0.98 / 31.0	0.25 / 6.7	0.29 / 11.5	1.82 / 84.5	0.14 / 3.6	0.94 / 54.9	2.22 / 19.5	0.959 / 31.54
low	0.28 / 7.8	0.80 / 27.4	0.85 / 23.3	0.20/5.6	0.27 / 12.8	0.64 / 21.7	0.08 / 2.5	0.53 / 23.9	2.11 / 14.8	0.640 / 15.54
V	0.94 / 27.1	3.00 / 50.6	1.72/33.2	0.41 / 8.1	0.46 / 13.6	3.71 / 71.3	0.19/5.9	1.57 / 53.7	4.25 / 18.9	1.804 / 31.37
	0.78 / 18.6	2.75 / 54.4	1.57 / 30.1	0.43 / 9.3	0.50 / 14.6	2.81 / 59.9	0.21 / 5.8	1.31 / 46.7	4.30/21.2	1.628 / 28.94
	1.01 / 22.1	4.95 / 96.4	1.52 / 35.9	1.00 / 59.6	1.19/98.4	6.66 / 99.5	0.81 / 84.4	1.39 / 45.2	4.64 / 64.9	2.575 / 67.38
)	1.19/51.6	4.52 / 96.3	1.58 / 50.7	0.78 / 53.3	1.01 / 82.1	6.65 / 99.2	0.72 / 73.1	1.39 / 52.3	4.75 / 79.7	2.510 / 70.90
W	0.80 / 20.9	2.93 / 55.6	1.48/31.4	0.45 / 9.6	0.52 / 14.5	2.86 / 62.5	0.22 / 5.6	1.31 / 48.4	4.28 / 19.7	1.649 / 29.81
W	1.49 / 80.3	2.64 / 80.1	2.72 / 91.8	0.54 / 15.3	0.77 / 22.0	3.79 / 81.5	0.55 / 27.8	1.78 / 75.3	4.45 / 32.5	2.080 / 56.28
Net	0.92/31.4	2.61 / 70.4	2.17 / 42.7	0.61 / 27.5	0.56 / 13.9	3.30 / 93.2	0.21 / 4.5	1.33 / 53.4	4.33 / 25.3	1.782 / 40.25
Γ	1.16 / 85.5	2.68 / 61.0	1.99 / 46.8	0.39 / 7.8	0.48 / 12.5	3.53 / 87.1	0.20 / 3.6	1.23 / 38.9	4.31 / 22.0	1.775 / 40.57
ner	0.91 / 13.8	4.41 / 96.3	1.40 / 32.6	0.80 / 54.8	1.03 / 90.0	6.54 / 99.3	0.74 / 75.8	1.47 / 57.4	4.59 / 61.9	2.432 / 64.67
low	0.55 / 8.8	2.04 / 33.6	1.64 / 26.3	0.38 / 7.2	0.51 / 13.9	2.00 / 34.7	0.17 / 5.0	1.28 / 33.1	4.18 / 15.1	1.417 / 19.73

4.3 Visualization Results on Real-Captured Data. CRAFT HiST-SFlow (Ours) SCFlow FlowFormer

4.4 Ablation Studies.

Ablations on Proposed Modules

	Settings		Δt =	= 10	$\Delta t = 20$	
InterF	IntraF	$\mathcal{L}_{ ext{scene}}$	AEPE	PO%	AEPE	PO%
X	×	X	0.986	33.17	2.095	56.56
\checkmark	×	X	0.694	18.18	1.449	21.99
\checkmark	\checkmark	X	0.676	17.34	1.433	22.79
\checkmark	×	\checkmark	0.675	16.63	1.448	21.40
\checkmark	\checkmark	\checkmark	0.640	15.54	1.417	19.73

Ablations on Different Representations

Representation	Δt =	= 10	$\Delta t = 20$		
Representation	AEPE	PO%	AEPE	PO%	
Window-Based	0.868	25.72	1.757	34.19	
Interval-Based	0.880	29.77	1.824	37.91	
Multi-Window	0.799	21.10	1.703	34.58	
ow-Guided Window	0.696	16.99	1.533	23.36	
HiST (Ours)	0.640	15.54	1.417	19.73	

4.5 Using HiST for Other Baselines.

Architecture	with HiST	Δt =	= 10	$\Delta t = 20$		
		AEPE	PO%	AEPE	PO%	
GMA	No Yes	1.087 0.666	33.63 16.91	2.575 1.391	67.38 21.20	
KPA-Flow	No Yes	0.827 0.659	24.12 16.99	1.649 1.363	29.81 22.27	
GMFlowNet	No Yes	0.863 0.730	24.98 21.22	1.782 1.452	40.25 24.93	

